自考题库
首页
所有科目
自考历年真题
考试分类
关于本站
游客
账号设置
退出登录
注册
登录
出自:兰州工业学院-高等数学
求由曲线y=√x,直线x=2和x轴所围图形绕x轴旋转一周所形成的旋转体的体积。
求由曲线y=1/x,直线x=1,x=2和x轴所围成图形面积。
计算定积分∫e 0 1n xdx
计算定积分∫4 0 1/1+√x dx
判断:d∫x 0 cos 2tdt=cos2x
判断:∫1 0 exdx=∫1 0 eydx
判断:∫1 0 πx2dx表示由曲线y=x2,直线x=1和x轴所围成图形绕x轴旋转一周所形成的旋转体的体积。
∫1 0 x2dx 表示由曲线y=x2,直线x=1和x轴所围图形面积。
判断:广义积分∫+∞ 1 1/x dx发散。()
(判断)∫1 0 x2dx>∫1 0 xdx
(∫x 1 t.e. dt).=()
∫e 1 3/x dx=()
若 ∫2 1f(x)dx=4, ∫3 2f(x)dx=6,则 ∫3 1 f(x)dx=()
∫b a f(x)dx- ∫ba g(x)dx= ∫ ba( )dx
若f(x),g(x)均在[a,b]内连续,且满足f(x)>g(x),则∫b af(x)dx() ∫b a g(x)dx.(比较大小)
定积分∫1 0 e2dt的积分区间为(),积分下限为(),积分上限为(),被积函数为(),值为()。
(∫3 -1 X2COS XDX).=
∫1 ∞ exdx=() A.不存在 B.0 C.e D.2
∫1 0 4/1+x2dx=() A.4 B.π c.π/4 D.2
由曲线y=cos(0≤x≤π/2)与x轴所围成图形的面积为() A.1 B.2 C.π/2 D.π
若∫1 0(2x-b)dx=2,则b=() A.2 B.-1 C.0 D.1
下列积分值为0的是() A.∫1 -1xdx B.∫1 -1x2dx c.∫1 -12dx D.∫1 -1cos xdx
若∫10f(x)dx=4,∫10g(x)dx=3,则∫10[f(x)+g(x)]dx=() A.4 B.3 C.1 D.7
首页
<上一页
1
下一页>
尾页