出自:佳木斯大学语言治疗学

The ___ theory believes that learning is a process iwhich the learner constructs meaning based ohis/her owexperiences and what he or she already knows.
·constructivist
·behaviorist
·structural
·cognitive
According to Ur (1996), a good presentatioshould include both oral and written, and both ___.
·reading and writing
·listening and reading
·vocabulary and grammar
·form and meaning
Whepractising stress with students ithe classroom, ___.
·we caexplaithe stress to the students
·we never make the students know which part is stressed
·students will always know which part is stressed
·we cause gestures, voice, and the blackboard to show the stress
Grammar presentatiois concerned with how to make the students understand or discover grammar rules. it is ___ that helps students develop grammatical capability.
·practice
·theory
·translation
·imitation
Wheteaching grammar, “You are a stranger ithis tow…” and “A policemawas asking some questions…” are two examples of using ___.
·mimes
·gestures
·chaiof events
·created situations
According to Clark, Scarino and Brownell, the maicomponents of a task include ____.
·exercises, exercise-tasks and tasks
·new language items, time and learning culture
·a purpose, a context, a process and a product/outcome
·pre-task, task cycle and language focus
13. 已知集合A={1, 3, 4},集合B={2, 4},则为( )。
·{1,2,3,4}
·{1,2,3}
·{4}
·{2}
12. 已知集合A={1, 3, 4},集合B={2, 4},则为( )。
·{1,2,3,4}
·{1,2,3,}
·{4}
·{2}
11. 已知集合A={1, 3, 4},集合B={2, 4},则为( )。
·{1,2,3,4}
·{1,2,3}
·{4}
·{2}
5. 下面命题为假的是( )
·
·
·
·
1. 设A、B是两个集合,若A中的每个元素都是B中的元素,并且A不等于B,则可记作( )。
·
·
·
·

·
·
·
·

·交换律
·结合律
·分配律
·同一律

·交换律
·结合律
·分配律
·同一律
已知集合A={a,{b,c},d,{{e}},则以下表达不正确的是( )。
·
·
·
·
16. 已知集合A={a,{b,c},d,{{e}}},则以下表达正确的是( )。
·
·
·
·
已知集合 ,集合 ,则 为( )。
·{1,2,3,4}
·{1,2,3}
·{4}
·{2}
已知集合 ,集合 ,则 为( )。
·{1,2,3,4}
·{1,2,3}
·{4}
·{2}
已知集合 ,集合 ,则 为( )。
·{1,2,3,4}
·{1,2,3}
·{4}
·{2}
A上的偏序关系≤的Hasse图如下,A的极小元为:( )
·{b}
·{c}
·{d}
·{d,b,c}
下面二叉树后序遍历的结果是:( )
·BACEDB
·BADCE
·ABDCE
·BDECA
函数,则( )
·1
·2
·4
·8
,则( )
·
·
·
·
函数连续是在可微的( )
·充分条件
·必要条件
·充分必要条件
·既不充分也不必要条件
函数,则( )
·
·
·
·
,则( )
·
·
·
·
,则( )
·-1
·0
·1
·2
设函数,则( )
·2
·1
·0
·-1
,则( )
·-1
·0
·1
·
设函数可导,则的微分是( )
·
·
·
·
,则( )
·
·
·
·
,则( )
·0
·1
·2
·4
函数,若,则( )
·0
·1
·2
·4
,则( )
·
·
·
·
,则( )
·
·
·
·
,则( )
·
·
·
·
函数,则( )
·0
·1
·2
·4
,则( )
·
·
·
·
,则( )
·
·
·
·
,则( )
·0
·x
·1
·2
函数可导是在连续的( )
·充分条件
·必要条件
·充分必要条件
·既不充分也不必要条件
( )。
·;
·;
·;
·0
函数严格单调减少区间为( )。
·,;
·;
·,;
·,
下列各等式中,不正确的是( )。
·;
·;
·;
·
函数上满足罗尔定理给的( )。
·0;
·;
·;
·
的严格单调增加区间为( )。
·;
·;
·;
·
下列各函数在上满足拉格朗日中值定理的有( )。
·;
·;
·;
·
函数点具有极限是点连续的( )
·必要条件;
·充分条件;
·充分必要条件;
·既不是必要条件,也不是充分条件.。
,则的( )。
·连续点;
·可去间断点;
·跳跃间断点;
·无穷间断点。
时,下列变量中( )与x为等价无穷小。
·;
·;
·;
·